Nonlocal optical effects on the fluorescence and decay rates for admolecules at a metallic nanoparticle.
نویسندگان
چکیده
A phenomenological model is implemented to study the decay rates of fluorescing molecules in the vicinity of a metallic nanoparticle, wherein the nonlocal optical response of the particle is accounted for via the hydrodynamic model for the description of the free electrons in the metal. These nonlocal effects are examined for each of the radiative rate and the nonradiative rate of the admolecule, respectively. In addition, the overall fluorescence rate which includes the enhancement ratio for the driving field intensity is also studied. It is found that for particles of very small sizes (<10 nm), the nonlocal effects, in general, lead to significantly greater fluorescence rates and smaller nonradiative decay rates for the admolecules, with the effects on radiative rates depending crucially on the orientation of the molecules. Furthermore, the effects are mostly noticeable for molecules close to the metal particle and in processes where higher multipolar interactions are significant such as those in nonradiative decay processes. Above all, these nonlocal effects can still be observable in the presence of large surface damping imposed on the metallic electrons due to the ultrasmall sizes of these nanoparticles. The relevance of these effects to some of the latest experiments is discussed.
منابع مشابه
Fluorescence characteristics of a molecule in the vicinity of a plasmonic nanomatryoska: nonlocal optical effects
The fluorescence characteristics of a dipole molecule in the vicinity of a spherical multilayered metallic nanoshell (a plasmonic nanomatryoska) of ultra-small dimensions is studied via electrodynamic modeling, where we have computed the fluorescence decay rates, the shifts in emission frequency, and the overall fluorescence yields for molecular dipoles of both tangential and radial orientation...
متن کاملMolecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects.
Molecular spontaneous emission and fluorescence depend strongly on the emitter local environment. Plasmonic nanoparticles provide excellent templates for tailoring fluorophore emission, as they exhibit potential for both fluorescence enhancement and quenching, depending on emitter positioning in the nanoparticle vicinity. Here we explore the influence of hitherto disregarded nonclassical effect...
متن کاملPlasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects
The problem of Förster resonance energy transfer FRET between two molecules in the vicinity of a metallic nanoparticle such as a nanoshell is studied within a phenomenological model which takes into account the nonlocal optical response of the metal. This model allows for arbitrary locations and orientations of the two molecular dipoles with respect to the metal particle which can be of ultrasm...
متن کاملNonlocal electrodynamic modeling of frequency shifts for molecules at rough surfaces
The problem of frequency shifts for admolecules at distances very close to a metallic substrate surface protrusion is considered. The molecule is modeled as an oscillating point dipole and the morphology of the substrate is represented by a spherical island. Nonlocal electrodynamic effects are taken into account within the hydrodynamic description of the surface electrons. The results show that...
متن کاملMolecular fluorescence in the vicinity of a charged metallic nanoparticle.
The modified fluorescence properties of a molecule in the vicinity of a metallic nanoparticle are further studied accounting for the possible existence of extraneous charges on the particle surface. This is achieved via a generalization of the previous theory of Bohren and Hunt for light scattering from a charged sphere, with the results applied to the calculation of the various decay rates and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 126 19 شماره
صفحات -
تاریخ انتشار 2007